Вес фундамента под оборудование должен превышать нагрузку в 4 раза - Строим сами

Вес фундамента под оборудование должен превышать нагрузку в 4 раза

Фундаменты под оборудование — особенности монтажа

Фундаменты под оборудование отличаются от оснований жилых или промышленных строений не только размерами. Суть различий кроется в самой конструкции таких фундаментов. Ведь такие основания ведь должны противостоять не только статическим (несущим), но и динамическим нагрузкам, источником которых является закрепленное на фундаменте оборудование.

К тому же, те условия, в которых эксплуатируется фундамент под оборудование, мягко говоря, далеки от идеала. Ведь помимо вибрации корпуса такое основание поглощает и массу агрессивных веществ – смазок, масел, охлаждающих жидкостей и прочих субстанций, действующих на тело фундамента самым разрушительным образом.

Но в этой статье мы расскажем вам не об отличиях между классическим основанием и фундаментом для оборудования, а о способе строительства конструкций, способных удержать и массу, и вибрацию любых станков и механизмов.

Устройство фундаментов под технологическое оборудование: общие правила

Сооружение фундамента под промышленное оборудование предполагает строительство конструкции с оригинальными качествами, а именно:

  • Значительной массой – чем больше вес основания, тем выше сопротивляемость вибрации.
  • Повышенной прочностью – чем выше стойкость к статическим и динамическим нагрузкам, тем больше период эксплуатации и самого фундамента, и смонтированного на основании оборудования.
  • Высокой устойчивостью к агрессивным средам – чем выше инертность хотя бы верхних слоев фундамента, тем дольше он прослужит в роли основания для станка или механизма.

Причем указанные характеристики дополняются еще и минимальными допусками по габаритам фундамента. То есть, на «своем месте» должны находиться не только болты, с помощью которых производится установка оборудования на фундамент – отклонения от расчетных габаритов (длинны, высоты, ширины) должны сводиться к минимуму.

Уклон ростверка должен отсутствовать в принципе. Иначе эксплуатационные нагрузки распределятся неравномерно, что уменьшит срок службы и основания и станины механизма.

Разновидности конструкций оснований

Подобный набор характеристик могут обеспечить только следующие разновидности конструкций фундаментов:

  • Бесподвальное основание плитного типа, гасящее вибрацию своей массой. Такие фундаменты можно залить в опалубку только на первом этаже цеха. Подобная конструкция обойдется в значительную сумму, поскольку на сооружение цельного основания плитного типа тратят максимальный объем строительного материала. Однако самые крупные станки и механизмы монтируют только на таких фундаментах.
  • Подвальное основание-перекрытие, монтируемое на втором этаже и выше. Такой фундамент гасит вибрацию, передавая колебания на каркас самого цеха (посредством контакта с межэтажным перекрытием). По сути – это такая же плита, только не залитая, а собранная из железобетонных изделий, установленных на балки межэтажного перекрытия. Подобное основание способно противостоять только статическим нагрузкам или вибрации с минимальной амплитудой.
  • Стенчатый фундамент, развивающий идею ленточного основания. Несущую нагрузку и вибрацию в данном случае принимают несущие стены или внутренние перегородки. Как правило, подобные фундаменты подводят под механизмы, расположенные на втором этаже цеха.
  • Основания рамного типа (с балочным ростверком). Такая конструкция выдерживает высокочастотную вибрацию. Поэтому в большинстве случаев фундаменты для ударных механизмов имеют «рамную» конструкцию. Ведь в опоры рамы можно вмонтировать демпферы, гасящие вибрацию.

Конструкционные материалы оснований

Разумеется, основания подобного качества невозможно соорудить из первого попавшегося стройматериала.

И в большинстве случаев такие фундаменты строят из:

  • Железобетона (методом заливки в опалубку).
  • Железобетонных блоков (методом сборки с перевязкой).
  • Металла (сборка свайной конструкции с рамным ростверком).
  • Железобетона и металла (бетонные сваи или блоки и металлический ростверк).

Подвальные, бесподвальные и стенчатые фундаменты создают из железобетона или железобетонных блоков. Причем железобетон производят на основе раствором М200-М300 (для станков с минимальной массой), или М300-М400 (для действительно тяжелого оборудования). Рамные основания можно собрать из любой разновидности вышеупомянутых материалов.

Расчет фундамента под оборудование

Любое строительство начинается с расчетов самой важной части дома – его фундамента. И сооружение нового рабочего места начинается с расчетов основания под станок или механизм.

В основе таких расчетов лежит сопоставление несущей способности грунта со статической и динамической нагрузкой, генерируемой установленным на фундаменте оборудованием. Причем передаваемая на площадь подошвы фундамента сумма статической и динамической нагрузки должна соответствовать несущей способности опорного грунта.

Характеристики грунта вычисляют на основе инженерно-геологических изысканий, в процессе которых определяют глубину залегания грунтовых вод, состав почвы, глубину промерзания и так далее.

Статическая нагрузка определяется массой оборудования, вычисляемой по спецификации станка или механизма. Динамическая нагрузка определяется по расчетному давлению на ростверк фундамента.

Причем указанное давление, генерируемое массой станка, корректируют с помощью двух коэффициентов:

  • Константы условий работы (от 0,5 для кузнечного молота, до 1,0 для токарно-винторезного станка).
  • Константы осадки грунта (от 0,7 до 1,0 – в зависимости от влажности почвы).

В итоге, зная массу станка, тип почвы и условия работы, можно высчитать (по несущей способности грунта) габариты основания.

Строительство основания для оборудования

Строительство простейшего основания плитного типа, под станок или маломощный пресс, происходит следующим образом:

  • Вначале следует определить месторасположение основания. Фундамент не должен соприкасаться со стенками, колоннами или внутренними перегородками самого здания. Минимальное расстояние от фундамента пресса до фундамента цеха равно 100 сантиметрам. Иначе вибрация перейдет на основание несущих стен, колон или перегородок.
  • После этого следует определить положение крепежных (фундаментных) болтов, фиксирующих станину пресса или станка. При этом нужно учитывать, что минимальное расстояние от края фундамента до оси болта рано 20 сантиметра. То есть, фундамент должен выступать за края станины, как минимум на 20-30 сантиметров.
  • Определив вышеупомянутые параметры можно приступать к земляным работам (рытью котлована). Причем глубина выемки грунта в не отапливаемом цеху равняется глубине промерзания + 25-40 сантиметров. В отапливаемом цеху глубина фундамента равняется 50-80 сантиметрам. Габариты самого котлована, равны ширине и высоте фундамента + глубина залегания подошвы. Ведь стенки котлована, как правило, обустраивают под наклоном в 45 градусов.
  • Завершив земляные работы можно заняться повышением несущей способности грунта, подсыпав на дно двухслойную песчано-гравиевую подушку (по 15-20 сантиметров на каждую фракцию).
  • Следующий этап – строительство опалубки, опоясывающей контур фундамента. Ее собирают из съемных металлических или деревянных щитов, соединенных поперечными стяжками.
  • На следующем этапе во внутреннюю полость основания вводят армирующий каркас (в основаниях для небольших станков можно обойтись без каркаса), а дно опалубки укрывают слоем гидроизоляции (рубероида). В особых случаях на дно основания укладывают особый материал, гасящий вибрацию (дубовый брус или что-то другое).
  • После этого внутреннюю полость заполняют бетоном, укладывая раствор слоями по 10-15 сантиметров.

Причем каждый слой тщательно утрамбовывается. Заливка и тамбовка каждого слоя должна завершиться до схватывания раствора (35-40 минут от момента введения бетона в опалубку).

  • В финале в верхний слой заливки вводят фундаментные болты с коническими или загнутыми торцами.

Фундамент считается готовым к эксплуатации спустя 25-30 дней от момента заливки. За это время монолит основания выйдет на расчетную прочность. Раньше этого срока оборудование на фундамент не монтируют.

Читать еще:  Рекомендации по проектированию и устройству оснований и фундаментов при

Пример расчета фундамента под оборудование

Рисунок 9 – Площадь подошвы фундамента

Данные для расчета.

Вес аппарата, кН Gм = 14,7;
Расстояние между осями фундаментных болтов, мм А = 1880 В = 1300;
Высота наземной части фундамента, мм Н1 = 100;
Глубина заложения фундамента, мм Н2 = 500
Нормативное давление на грунт, кПа Rн = 200;
Коэффициент уменьшения* α = 0,5;
Удельный вес бетона, кН/м 3 γ = 20.

*Учитывают степень динамичности машин с помощью коэффициента «α», изменяющегося от 0,3 до 1. Чем выше степень динамичности, тем меньше значение коэффициента «α» (приложение В).

1. Фундамент не должен давать значительной осадки, что достигается, если фактическое давление на грунт Р, кПа, основания системы «аппарат + фундамент» будет меньше нормативного

Р = (Gм + Gф)/(α F) ≤ Rн , (45)

где Gм – вес фундамента:

Gм = V γ (46)

V – объем фундамента, м 3

V = F∙Н, (47)

Н – общая высота фундамента, м

Н = Н1 + Н2 (48)

Н = 100 + 500 = 600 мм = 0,6 м

F – площадь фундамента, м 2

F = (А + 2∆) (В + 2∆) (49)

∆ – припуск на каждую сторону, ∆ = 0,1 м

F = (1880 + 2∙0,1)(1300 + 2∙0,1) = 6,36 м 2

V = 6,36∙0,6 = 3,8м 3

Р = (14,7 + 76)/0,5∙6,36 = 28,5 кН

2. Определяем возможное отклонение оси аппарата от оси фундамента – эксцентриситеты е и е1, которые не должны превышать 5% от соответствующей стороны фундамента

Из пропорций находим предельные эксцентриситеты е и е1, мм

е = 2080∙5/100 = 104мм

е1 = 1500∙5/100 = 75 мм

Расчет приспособлений для монтажа оборудования.

Расчет строп.

Стропы из стальных канатов применяются для соединения монтажных полиспастов с подъемно-транспортными средствами, якорями и строительными конструкциями, а также для строповки поднимаемого или перемещаемого оборудования и конструкций с подъемно-транспортными механизмами.

Для строповки тяжеловесного оборудования преимущественно используются инвентарные витые стропы, выполняемые в виде замкнутой петли, путем последовательной параллельной укладки перевитых между собой витков каната вокруг начального центрального витка. Эти стропы имеют ряд преимуществ: равномерность распределения нагрузки на все ветви, сокращение расхода каната, меньшая трудоемкость строповки. Технические данные рекомендуемых типов канатов приведены в приложении Г (таблица 1).

Канатные стропы рассчитываются в следующем порядке (рисунок 10).

1. Определяем натяжение в одной ветви стропа, кН:

(50)

где P – расчетное усилие, приложенное к стропу, без учета коэффициентов перегрузки и динамичности, кН;

m – общее количество ветвей стропа;

– угол между направлением действия расчетного усилия и ветвью стропа, которым задаемся исходя из поперечных размеров поднимаемого оборудования и способа строповки (этот угол рекомендуется назначать не более 45⁰, имея ввиду, что с его увеличением усилие в ветви стропа резко возрастает).

2. Находим разрывное усилие в ветви стропа, кН:

(51)

где kз коэффициент запаса прочности для стропа, в зависимости от типа стропа (приложении Г(таблица 2)).

3. По расчетному разрывному усилию, пользуясь таблицей 1.приложения Г, подбираем наиболее гибкий стальной канат и определяем его технические данные: тип и конструкцию, временное сопротивление разрыву, разрывное усилие и диаметр.

Рисунок 10. Расчетная схема.

Рассчитать стальной канат для стропа, применяемого при подъеме при подъеме горизонтального цилиндрического теплообменного аппарата массой Go=15000кг.

1. Определить натяжение одной ветви стропа, задаваясь общим количеством ветвей m = 4 и углом наклона их =45⁰ к направлению действия расчетного усилия P.

2. Находим разрывное усилие в ветви стропа.

3. По найденному разрывному усилию, пользуясь приложением Г (таблица 1), подбираем канат типа ЛК-РО конструкции 6х36(1+7+7/7+14) о.с. (ГОСТ7668-80) с характеристика:

временное сопротивление разрыву, МПа…………………..1960

масса 1000м каната, кг………………………………………. 2130

Расчет траверс.

В практике монтажа оборудования применяются траверсы двух видов – работающие на изгиб и на сжатие. Первые конструктивно более тяжелые, но обладают значительно меньшими высотными габаритами, что имеет существенное значение при подъеме оборудования в помещениях с ограниченной высотой, а также при недостаточных высотах подъема крюка грузоподъемного механизма.

Расчет траверс, работающих на изгиб.

1. Подсчитываем нагрузку, действующую на траверсу, кН

, (52)

где GO – масса поднимаемого груза, кг,

2. Определяем изгибающий момент в траверсе,

(53)

где а – длина плеча траверсы, см.

3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы, см 3 .

(54)

где m и R выбирают по приложению Г (таблицы 3 и 4).

Рисунок 11. Расчетная схема траверсы, работающей на изгиб.

4. Выбираем для траверсы сплошного сечения одиночный швеллер, двутавр или сплошную трубу, и по приложению Г (таблицы 5, 6, 7) определяем момент сопротивления WX, ближайший больший к WТР. В случае невозможности изготовления траверсы большого сечения при больших значениях WТР балки траверсы изготавливаются либо сквозного сечения из парных швеллеров или двутавров, а также из труб, усиленных элементами жесткости, либо, наконец, решетчатой конструкции.

Подобрать и рассчитать сечение балки траверсы, работающей на изгиб, для подъема ротора турбины массой GO =24тонны с расстоянием между стальными подвесками l = 4м (рисунок 11).

1. Подсчитываем нагрузку, действующую на траверсу:

2. Определяем изгибающий момент в траверсе:

3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы:

4. Выбираем по табличным данным конструкцию балки траверсы сквозного сечения, состоящую из двух двутавров, соединенных стальными мостиками на сварке.

5. Подбираем по таблице ГОСТ (приложение Г таблица 5) два двутавра №40 с =953 см 3 , определяем момент сопротивления сечения траверсы в целом:

> WТР=1624 см 3

что удовлетворяет условию прочности расчетного сечения траверсы.

Дата добавления: 2018-05-12 ; просмотров: 3661 ; ЗАКАЗАТЬ РАБОТУ

Фундаменты под оборудование — особенности монтажа

Фундаменты под оборудование отличаются от оснований жилых или промышленных строений не только размерами. Суть различий кроется в самой конструкции таких фундаментов. Ведь такие основания ведь должны противостоять не только статическим (несущим), но и динамическим нагрузкам, источником которых является закрепленное на фундаменте оборудование.

К тому же, те условия, в которых эксплуатируется фундамент под оборудование, мягко говоря, далеки от идеала. Ведь помимо вибрации корпуса такое основание поглощает и массу агрессивных веществ – смазок, масел, охлаждающих жидкостей и прочих субстанций, действующих на тело фундамента самым разрушительным образом.

Но в этой статье мы расскажем вам не об отличиях между классическим основанием и фундаментом для оборудования, а о способе строительства конструкций, способных удержать и массу, и вибрацию любых станков и механизмов.

Устройство фундаментов под технологическое оборудование: общие правила

Сооружение фундамента под промышленное оборудование предполагает строительство конструкции с оригинальными качествами, а именно:

  • Значительной массой – чем больше вес основания, тем выше сопротивляемость вибрации.
  • Повышенной прочностью – чем выше стойкость к статическим и динамическим нагрузкам, тем больше период эксплуатации и самого фундамента, и смонтированного на основании оборудования.
  • Высокой устойчивостью к агрессивным средам – чем выше инертность хотя бы верхних слоев фундамента, тем дольше он прослужит в роли основания для станка или механизма.

Причем указанные характеристики дополняются еще и минимальными допусками по габаритам фундамента. То есть, на «своем месте» должны находиться не только болты, с помощью которых производится установка оборудования на фундамент – отклонения от расчетных габаритов (длинны, высоты, ширины) должны сводиться к минимуму.

Уклон ростверка должен отсутствовать в принципе. Иначе эксплуатационные нагрузки распределятся неравномерно, что уменьшит срок службы и основания и станины механизма.

Разновидности конструкций оснований

Подобный набор характеристик могут обеспечить только следующие разновидности конструкций фундаментов:

  • Бесподвальное основание плитного типа, гасящее вибрацию своей массой. Такие фундаменты можно залить в опалубку только на первом этаже цеха. Подобная конструкция обойдется в значительную сумму, поскольку на сооружение цельного основания плитного типа тратят максимальный объем строительного материала. Однако самые крупные станки и механизмы монтируют только на таких фундаментах.
  • Подвальное основание-перекрытие, монтируемое на втором этаже и выше. Такой фундамент гасит вибрацию, передавая колебания на каркас самого цеха (посредством контакта с межэтажным перекрытием). По сути – это такая же плита, только не залитая, а собранная из железобетонных изделий, установленных на балки межэтажного перекрытия. Подобное основание способно противостоять только статическим нагрузкам или вибрации с минимальной амплитудой.
  • Стенчатый фундамент, развивающий идею ленточного основания. Несущую нагрузку и вибрацию в данном случае принимают несущие стены или внутренние перегородки. Как правило, подобные фундаменты подводят под механизмы, расположенные на втором этаже цеха.
  • Основания рамного типа (с балочным ростверком). Такая конструкция выдерживает высокочастотную вибрацию. Поэтому в большинстве случаев фундаменты для ударных механизмов имеют «рамную» конструкцию. Ведь в опоры рамы можно вмонтировать демпферы, гасящие вибрацию.
Читать еще:  Формы для декоративного камня для фасада и цоколя

Конструкционные материалы оснований

Разумеется, основания подобного качества невозможно соорудить из первого попавшегося стройматериала.

И в большинстве случаев такие фундаменты строят из:

  • Железобетона (методом заливки в опалубку).
  • Железобетонных блоков (методом сборки с перевязкой).
  • Металла (сборка свайной конструкции с рамным ростверком).
  • Железобетона и металла (бетонные сваи или блоки и металлический ростверк).

Подвальные, бесподвальные и стенчатые фундаменты создают из железобетона или железобетонных блоков. Причем железобетон производят на основе раствором М200-М300 (для станков с минимальной массой), или М300-М400 (для действительно тяжелого оборудования). Рамные основания можно собрать из любой разновидности вышеупомянутых материалов.

Расчет фундамента под оборудование

Любое строительство начинается с расчетов самой важной части дома – его фундамента. И сооружение нового рабочего места начинается с расчетов основания под станок или механизм.

В основе таких расчетов лежит сопоставление несущей способности грунта со статической и динамической нагрузкой, генерируемой установленным на фундаменте оборудованием. Причем передаваемая на площадь подошвы фундамента сумма статической и динамической нагрузки должна соответствовать несущей способности опорного грунта.

Характеристики грунта вычисляют на основе инженерно-геологических изысканий, в процессе которых определяют глубину залегания грунтовых вод, состав почвы, глубину промерзания и так далее.

Статическая нагрузка определяется массой оборудования, вычисляемой по спецификации станка или механизма. Динамическая нагрузка определяется по расчетному давлению на ростверк фундамента.

Причем указанное давление, генерируемое массой станка, корректируют с помощью двух коэффициентов:

  • Константы условий работы (от 0,5 для кузнечного молота, до 1,0 для токарно-винторезного станка).
  • Константы осадки грунта (от 0,7 до 1,0 – в зависимости от влажности почвы).

В итоге, зная массу станка, тип почвы и условия работы, можно высчитать (по несущей способности грунта) габариты основания.

Строительство основания для оборудования

Строительство простейшего основания плитного типа, под станок или маломощный пресс, происходит следующим образом:

  • Вначале следует определить месторасположение основания. Фундамент не должен соприкасаться со стенками, колоннами или внутренними перегородками самого здания. Минимальное расстояние от фундамента пресса до фундамента цеха равно 100 сантиметрам. Иначе вибрация перейдет на основание несущих стен, колон или перегородок.
  • После этого следует определить положение крепежных (фундаментных) болтов, фиксирующих станину пресса или станка. При этом нужно учитывать, что минимальное расстояние от края фундамента до оси болта рано 20 сантиметра. То есть, фундамент должен выступать за края станины, как минимум на 20-30 сантиметров.
  • Определив вышеупомянутые параметры можно приступать к земляным работам (рытью котлована). Причем глубина выемки грунта в не отапливаемом цеху равняется глубине промерзания + 25-40 сантиметров. В отапливаемом цеху глубина фундамента равняется 50-80 сантиметрам. Габариты самого котлована, равны ширине и высоте фундамента + глубина залегания подошвы. Ведь стенки котлована, как правило, обустраивают под наклоном в 45 градусов.
  • Завершив земляные работы можно заняться повышением несущей способности грунта, подсыпав на дно двухслойную песчано-гравиевую подушку (по 15-20 сантиметров на каждую фракцию).
  • Следующий этап – строительство опалубки, опоясывающей контур фундамента. Ее собирают из съемных металлических или деревянных щитов, соединенных поперечными стяжками.
  • На следующем этапе во внутреннюю полость основания вводят армирующий каркас (в основаниях для небольших станков можно обойтись без каркаса), а дно опалубки укрывают слоем гидроизоляции (рубероида). В особых случаях на дно основания укладывают особый материал, гасящий вибрацию (дубовый брус или что-то другое).
  • После этого внутреннюю полость заполняют бетоном, укладывая раствор слоями по 10-15 сантиметров.

Причем каждый слой тщательно утрамбовывается. Заливка и тамбовка каждого слоя должна завершиться до схватывания раствора (35-40 минут от момента введения бетона в опалубку).

  • В финале в верхний слой заливки вводят фундаментные болты с коническими или загнутыми торцами.

Фундамент считается готовым к эксплуатации спустя 25-30 дней от момента заливки. За это время монолит основания выйдет на расчетную прочность. Раньше этого срока оборудование на фундамент не монтируют.

Строй-справка.ру

Отопление, водоснабжение, канализация

Навигация:
Главная → Все категории → Монтаж холодильных установок

Опорные конструкции. Все машины, аппараты, механизмы и трубопроводы крепят к опорным конструкциям, которыми могут служить строительные конструкции (полы, перекрытия, стены, колонны, консольные балки), кронштейны, скобы, подвески, прикрепленные к потолку, постаменты, виброизолирующие опоры и фундаменты.

Непосредственно на строительных конструкциях размещают оборудование небольшой массы при малых удельных нагрузках на грунт и хорошо уравновешенных динамических нагрузка. Так, на стенах и колоннах располагают холодильники, маслоотделители, к стенам и перекрытиям крепят охлаждающие батареи и воздухоохладители, на полу и перекрытиях устанавливают вентиляторы, насосы, емкостное и теплообменное оборудование, а также компрессорно-конденсаторные агрегаты небольшой мощности. При установке оборудования на перекрытиях и других строительных конструкциях проверяют допустимость дополнительных нагрузок по сравнению с принятыми по расчету проекте.

В целях распределения нагрузки от оборудования на большую площадь пола, а также для поднятия оборудования на заданную высоту его размещают на постаменте. В качестве постамента могут быть использованы бетонные плиты заводского изготовления.

При установке машин и механизмов с неуравновешенными динамическими нагрузками используют виброизолирующие опоры (рис. 1), гасящие вибрацию. Гашение вибрации осуществляется путем использования резиновых и пружинных элементов, размещенных между металлическими или железобетонными плитами, к верхней из которых крепят оборудование. Гашение вибрации и шума осуществляют также путем использования пластмассовых дюбелей, установкой мягких вставок на вентиляционных коробах, неметаллических участков трубопроводов, компенсационных петель на нагнетательных трубопроводах и других подобных устройств. Для передачи нагрузки от оборудования большой массы или при повышенной динамической нагрузке на грунт сооружают фундаменты (рис. 1, а).

Читать еще:  Что будет если пароизоляцию положить не той стороной?

1. Примеры конструкций устройств для предотвращения- передачи вибрации:

Проектирование фундаментов. Проектирование фундаментов ведут в соответствии со СНиП 2.02.01-83 «Основания зданий и сооружений» и СНиП II-19-79 «Фундаменты с динамическими нагрузками». Разработка проекта фундамента заключается в расчете массы фундамента для гашения колебаний от динамических нагрузок работающего оборудования и в определении его размеров.

Для крепления рамы оборудования к фундаменту используют фундаментные болты, заделываемые в массив фундамента или закрепляемые в закладных деталях — анкерных плитах в предназначенных для этих целей колодцах.

Высота фундамента складывается из высоты наземной части («оголовка») и глубины заложения (расстояния от уровня пола до нижней грани фундамента — подошвы). Высота наземной части определяется требованиями технологического процесса и техники безопасности. Глубину заложения фундаментов, сооружаемых вне помещений, принимают на 20 см ниже глубины промерзания для данной местности, в неотапливаемых помещениях на величину, равную 0,7 от глубины промерзания, а в отапливаемых помещениях глубину промерзания не учитывают.

Размеры верхней части фундамента в плане устанавливают, руководствуясь размерами рамы или опорных лап оборудования и необходимостью устройства колодцев под фундаментные болты. Расстояние от боковых граней колодцев и от края рамы или опорной лапы до боковой грани фундамента должно быть не менее 50 мм, а при установке болтов диаметром более 24 мм — не менее 100 мм. От концов заделанных фундаментных болтов до края подошвы фундамента должно быть расстояние также не менее 100 мм.

Размеры подошвы фундамента определяют, исходя из допустимой нагрузки на грунт основания. Несущая способность грунта определяется нормативной нагрузкой — условным расчетным давлением (МПа), которое тем выше, чем больше твердость породы, величина зерна, меньше — влагосодержание и пластичность. Основные типы грунтов по этому признаку можно расположить в виде возрастающего ряда: глины — суглинки — супеси — пески — гравийные и щебенистые галечники — скальные породы.

При проектировании фундамента стремятся к уменьшению его общей высоты и увеличению размеров в плане, что повышает его устойчивость и уменьшает амплитуду колебаний. Центр тяжести системы «оборудование, — фундамент — грунт», лежащий на выступающих частях фундамента, должен находиться на одной вертикали с центром тяжести подошвы фундамента. В соответствии со СНиП II-19-79 допускается отклонение не более 3% для грунтов с нормативной нагрузкой R0 0,15 МПа и 5% для более прочных грунтов от длины той стороны подошвы, в направлении которой смещен центр тяжести.

Фундаменты могут быть отдельными, общими или размещаться на общей фундаментной плите (рис. 1, б, в, г). В зависимости от устанавливаемого оборудования их проектируют массивными монолитными, рамными или стенчатыми. Последние состоят из нижней фундаментной плиты, колонн (столбов), поперечных и продольных стен и верхней горизонтальной плиты, на которой крепят оборудование. Колонны, стены и плиты армируют стержнями и сеткой. Фундаменты могут быть монолитными и сборными — из отдельных блоков заводского изготовления. Для изготовления фундаментов берут бетон марки не ниже М150, а для сборных — не ниже М200. Для оборудования без динамических нагрузок допускается устройство неармированных монолитных фундаментов из бетона Ml00, а также из хорошо обожженного кирпича. В целях предотвращения передачи вибрации от машин с динамическими нагрузками на строительные конструкции фундаменты машин по периметру отделяют щелевидной траншеей шириной 100 мм, которую засыпают песком, керамзитом или шлаком.

Основные операции по изготовлению фундаментов следующие:
– разметка главных осей фундамента и габаритов котлована; рытье котлована (рис. 2, а);
– уплотнение основания котлована;
– подсыпка песчаного основания или устройство бетонной подушки — фундаментной плиты для грунтов недостаточной несущей способности;
– разметка габаритов фундамента;
– установка и сварка арматуры, устройство опалубки;
– укладка бетона (рис. 2, б) с уплотнением вибраторами; нанесение осевых и высотных отметок на планки (рис. 2, в);
– снятие опалубки и засыпка грунта («обратная засыпка»).

Осями фундамента являются горизонтальные проекции осей агрегатов, роторов, приводов, цилиндров машин и пр. При разметке оси фундаментов обозначают стальной калиброванной струной диаметром 0,3-0,5 мм, натянутой над фундаментом на высоте 0,5-0,8 м. Струны крепят к скобам на строительных конструкциях и на другой стороне натягивают через ролик гру-» ом массой, равной 2/з массы, обрывающей проволоку.

При устройстве опалубки и бетонировании фундаментов большое внимание уделяют формированию колодцев под фундаментные болты.

При изготовлении фундаментов небольших машин можно заделать фундаментные болты непосредственно в массив фундамента при укладке бетона («глухие» болты), предварительно укрепив их в деревянной раме, устанавливаемой над котлованом по осям и высотным отметкам, соответствующим положению оборудования. Расположение болтов в деревянной раме соответствует их расположению в раме монтируемого оборудования.

При изготовлении опалубки фундаментов крупных машин для формирования колодцев под фундаментные болты устанавливают деревянные пробки или дощатые короба, которые для облегчения последующего удаления их из бетона замачивают в воде. Перед установкой арматуру и закладные детали для хорошего сцепления с бетоном обезжиривают.

Укладку бетона ведут непрерывно слоями по 10-15 см с уплотнением каждого слоя вибратором. Короба и пробки удаляют из массива фундамента через 3-5 сут по достижении бетоном 30 %-ной твердости. Опалубку снимают через 10-12 сут — по достижении бетоном 70 %-ной твердости. Монтаж оборудования можно вести по достижении бетоном 50 %-ной твердости через 6-7 сут. Затяжку фундаментных болтов и подливку рамы бетоном М150 проводят через 18-20 сут, т.е. через 10- 12 сут после заполнения колодцев фундаментных болтов бетоном. Полное отверждение бетона происходит через 26-29 сут. В процессе изготовления фундамента из укладываемого бетона берут контрольные кубики, которые после его отверждения испытывают в лаборатории для подтверждения качества укладываемого бетона.

Приемка фундаментов. При приемке фундаментов проверяют разметку осей, размеры фундамента и его расположение относительно строительных конструкций, осевые и высотные отметки, качество бетонирования закладных деталей-, размеры и размещение гнезд или колодцев под фундаментные болты, перпендикулярность опорных поверхностей анкерных плит оси колодцев (рис. 3). Прочность бетона проверяют по контрольным кубикам и путем простукивание молотком и нанесения штрихов зубилом. На бетоне выше М100 остаются слабые штрихи от зубила; звук при ударе звонкий, вмятин от молотка не остается; на бетоне М75 и М100 — штрихи от зубила глубиной 1,0-1,5 мм и вмятины от молотка.

Фундаменты и опоры под оборудование и металлоконструкции, устанавливаемые без подливки, принимают с выровненной поверхностью. Закладные детали и пластины проверяют обстукиванием молотком на отсутствие дребезжащего звука.

Допустимы отклонения основных размеров фундамента от указанных в чертеже. По высоте отклонение не должно превышать -30 мм, по длине и ширине ±30 мм, по привязанным размерам продольных и поперечных осей фундаментов и колодцев ±20 мм. Общая схема проверки размеров фундамента центробежного компрессора показана на рис. 4.

Навигация:
Главная → Все категории → Монтаж холодильных установок

Ссылка на основную публикацию
Adblock
detector