Рекомендации по исправлению дефектов забивки свай в фундаментах жилых зданий

Рекомендации по устранению дефектов

Вопрос № 6: Дать рекомендации по устранению выявленных в ходе обследования иных обнаруженных дефектов.

Ответ строительного эксперта: При прогрессирующем развитии деформаций, развитии существующих и образовании новых трещин в несущих и ограждающих конструкциях здания, свидетельствующих о недостаточной несущей способности основания, с целью повышения прочности основания здания торгово-развлекательного комплекса и предотвращения развития в конструкциях деформаций аварийного характера, экспертизой (в зависимости от технологии производства и процессов, происходящих в грунте) рекомендуется применить один из следующих методов укрепления и усиления оснований: механический, термический, физико-химический и химический.

6.1. Механический способ усиления оснований подразделяется на глубинный и поверхностный.

Глубинное уплотнение оснований фундаментов существующих зданий в основном выполняется путем устройства наклонных скважин, заполняемых песком.

Глубинное уплотнение песчаных грунтов в состоянии водонасыщения производится специальными глубинными вибраторами двумя способами: опусканием вибратора (вибробулавы) в песок или погружением стержня совместно с расположенным в его верхней части вибратором. Виброуплотнение позволяет уплотнять водонасыщенные пески на глубину 1+10 м, реже на глубину 20 м. При уплотнении песков толщиной до 20 м применяется вибропогружатель, который крепится к трубчатому стержню, снабженному приваренными поперечными планками.

Уплотнение пылеватых песков и просадочных лессовых грунтов производится с помощью камуфлетных взрывов. Пылеватые пески уплотняются путем погружения в грунт зарядов на расчетную глубину с последующим устройством камуфлета. После взрыва происходит оседание поверхности песка, что свидетельствует о его уплотнении. Для уплотнения лессовых грунтов производится их замачивание через фильтрующие или совмещенные скважины, в которые помещают заряды в трубках. Взрывы производят один за другим с разрывом в несколько секунд. В результате уплотненный лессовый грунт теряет свои просадочные свойства и может быть использован для передачи значительных нагрузок. Верхняя часть этого грунта уплотняется тяжелыми трамбовками.

Устройство песчаных и грунтовых свай применяется для уплотнения водонасыщенных песков, содержащих органические примеси, и лессовых просадочных грунтов на значительную глубину. Работы по устройству песчаных свай начинаются с погружения в грунт вибратором или молотом пустотелой металлической трубы с самораскрывающимся наконечником (в лессовых грунтах, способных держать вертикальную стенку, забивают инвентарный сердечник). Это приводит к уплотнению грунта вокруг скважин. По мере заполнения скважины песком труба извлекается с выключенным вибратором, благодаря чему происходит уплотнение грунта. Песчаные (грунтовые) сваи размещают в шахматном порядке. С помощью специального расчета определяется площадь уплотняемого основания, количество песчаных свай, расстояние между ними, объем песка и т. д. Применение песчаных свай вместо забивных железобетонных позволяет снизить стоимость устройства фундаментов в 2+2,5 раза, при этом экономится значительное количество металла и цемента.

Уплотнение грунта статической нагрузкой рекомендуется для слабых глинистых водонасыщенных грунтов и торфов. В качестве статической нагрузки используется земляная насыпь, а для ускорения процесса уплотнения устраиваются вертикальные дрены. Песчаные дрены выполняют диаметром 30+50 см на расстоянии 2+4 м друг от друга. Вместо песчаных дрен могут устраиваться дрены пористого специального картона или пластмассовой ленты в бумажном кожухе. Насыпь отсыпается слоями, давление по ее подошве должно быть несколько выше, чем давление от сооружения.

Уплотнение грунта водопонижением основано на снижении уровня подземных вод, это приводит к повышению напряжения на скелет грунта и вызывает его уплотнение. Таким образом уплотняются слабые глинистые грунты (способные отдавать из пор воду), заторфованные супеси, леточные глины, илы и др. Отжатие воды производится чаще всего с помощью иглофильтровых установок. Однако некоторые слабо фильтрующие глинистые грунты отдают воду с большим трудом, поэтому для усиления оттока воды применяют электроосмос. Откачивая воду, собирающуюся у катода, производят обезвоживание грунта и его уплотнение. Одновременно происходит упрочнение грунта в сравнительно короткое время и в пределах необходимой площади.

Поверхностное усиление применено только для уплотнения маловлажных и влажных грунтов с коэффициентом водонасыщения менее 0,7. Оно выполняется с помощью катков, виброплит, трамбовок и так далее и в основном используется при новом строительстве или перекладке фундаментов.

Поверхностное уплотнение глинистых и песчаных грунтов производится чаще всего тяжелыми трамбовками до плотности сложения, при которой они обладают требуемой прочностью и деформативностью.

Глубина уплотнения грунтов тяжелыми трамбовками зависит от плотности и влажности уплотняемых грунтов, диаметра, веса трамбовки и приближенно определяется по формуле:

Все трамбовки назначают из условия обеспечения давления на грунт не менее 0,015+0,20 МПа (обычно он равен 20+50кН). Известны случаи применения сверхтяжелых трамбовок весом 400кН, позволяющих при сбрасывании с высоты 40 м уплотнить щебенисто-каменную насыпь на глубину до 40 м.

Уплотнение глинистых грунтов производится при оптимальной влажности:

Ширина уплотненной полосы за пределами фундамента должна быть не менее 0,2 м с каждой стороны и не менее диаметра трамбовки.

Уплотнение грунтов тяжелыми трамбовками сопровождается динамическим воздействием на грунт и может вызвать сотрясение близко расположенных жилых зданий или сооружений. В связи с этим при уплотнении трамбовками весом до 50кН расстояние до зданий, находящихся в удовлетворительном состоянии, должно быть не менее 10 м. При наличии близко расположенных зданий, имеющих трещины в стенах или вообще находящихся в ветхом состоянии, это расстояние увеличивается до 15 м. Если инженерные сети выполняются из асбестоцементных, керамических труб, то расстояние до зданий принимается более 15 м.

До начала работ по уплотнению грунтов тяжелыми трамбовками проводят опытные работы на участке котлована: уточняется величина недобора грунта, отказа при трамбовании (осадка от одного удара), количество ударов, глубина уплотняемой зоны и т. д. Полученные данные используют при составлении проекта работ по уплотнению грунтов тяжелыми трамбовками.

Рыхлые песчаные грунты на глубину 0,5+1,5 м уплотняются различными вибрационными машинами: виброплитами, пневматическими трамбовками, виброкатками, молотами двойного действия и др. Уплотнение грунтов может быть достигнуто многократной проходкой катков.

6.2. Термозакрепление (обжиг) применяется в основном при закреплении просадочных грунтов. Топливо сжигает в герметически закрытых скважинах, пробуренных вертикально, наклонно или горизонтально в толще закрепляемого грунта. Новым в термическом закреплении является применение так называемого электротермического способа обжига грунта, основанного на использовании нихромных электронагревателей. Благодаря изменению мощности теплоисточника по высоте скважины в результате применения погружных элементов можно регулировать форму и размеры образующихся при обжиге термогрунтовых тел с учетом неоднородности напластования грунтов.

6.3. К физико-химическим способам закрепления грунтов относятся цементация и использование грунтоцементных материалов. Цементация грунта заключается в нагнетании в грунт через инъекторы цементного или цементно-песчаного раствора, который обеспечивает в закрепляемом основании создание отдельных столбов или массивов из сцементированного грунта. Цементацию обычно применяют для закрепления песчаных и крупнообломочных грунтов, а также трещиноватых скальных пород.

6.4. К химическим способам закрепления грунтов относятся силикатизация, электросиликатизация, газовая силикатизация, аммонизация, смолизация и др. на практике наиболее часто применяется силикатизация.

6.4.1. Основным материалом для силикатизации является жидкое стекло – коллоидный раствор силиката натрия. В зависимости от вида, состава и состояния закрепляемых грунтов применяется одно- и двух растворная силикатизация.

Однорастворная силикатизация основана на введении (инъецировании) в грунт гелеобразующего раствора, состоящего из двух или трех компонентов. Однорастворный способ используется для закрепления лессовых просадочных и песчаных грунтов с коэффициентом фильтрации 0,5+5 м/сут. Двухрастворный способ силикатизации применяется для закрепления песчаных грунтов с коэффициентом фильтрации до 0,5 м/сутки и состоит в поочередном нагнетании в грунт двух растворов: силиката натрия и хлористого кальция.

6.4.2. Аммонизация заключается в нагнетании в грунт под небольшим давлением газообразного аммиака. Способ применяют для придания лессовым грунтам свойства непросадочности.

6.4.3. Смолизация представляет собой закрепление грунтов путем инъецирования в них водных растворов синтетических смол.

В качестве первоочередных мероприятий по усилению основания здания ТРК «», экспертизой рекомендуется осуществить следующие работы:

  • мероприятия по водоотведению посредством устройства стены в грунте из монолитного железобетона по границе земельного участка со строящимся на соседнем участке торговым комплексом, вдоль оси «М»;
  • мероприятия по закреплению грунтов основания методом цементация грунтов восходящим способом через скважины, пробуренные сквозь железобетонную плиту паркинга.

Метод и объемы работ по закреплению грунтов основания подлежит уточнению и детальной проработке специализированной организации при разработке проекта усиления основания.

Экспертизой определена ориентировочная стоимость рекомендуемых работ по усилению основания здания ТРК «», составляющая 26 *** ***. (см. Приложение № 2: Локальный сметный расчет № 1 по усилению основания ТРК «»).

Строительная экспертиза | Обследование сооружений | Строительная экспертиза Санкт-Петербург | Экспертиза домов
Москва, ул. Верхняя Первомайская, д. 43, офис 206. Офис работает по будням с 9.30 до 18.30, без обеда
E-mail: info@89265277274.ru | Телефоны: +7(926)527-72-74
© 2018 ООО “Независимое агентство строительных экспертиз”

Повреждения и дефекты фундаментов и грунтов основания

Конструктивный элемент или его часть

Основные причины повреждения

Грунт основания фундамента

Уменьшение расчетного сопротивления грунта, увеличение агрессивности среды

Эксплуатационные факторы: увлажнение, увеличение нагрузки и ошибки при проектировании

Сваи не объединены в ростверк

Нарушение условий забивки свай или устройства ростверка

Смещение в плане от проектного расположения свай

Нарушение проекта в процессе устройства свайного фундамента

Несоответствие класса бетона примененных свай проектному

Сваи не забиты до проектной отметки

Нарушение в процессе устройства свайного фундамента

Стальная арматура, закладные и соединительные детали

Коррозионные следы на поверхности конструктивных элементов

Коррозия арматуры, закладных деталей

Коррозия арматуры, закладных деталей, соединительных накладок

Эксплуатационные факторы, нарушения в процессе изготовления

Общие деформации ростверка в вертикальной или горизонтальной плоскости

Нарушения в технологии устройства; эксплуатационные факторы; ошибки при проектировании

Трещины шириной более 0,3 мм в бетоне ростверка, распространение отдельных из них на цокольные панели

Нарушение технологии производства работ. Эксплуатационные факторы; ошибка при проектировании

Местные деформации (смятие, сколы и др.) бетона ростверка, в том числе в местах опирания панелей

Нарушение технологии производства работ в процессе возведения; неправильная установка панелей

Полное или частичное отсутствие вертикальной и горизонтальной гидроизоляции ростверка

Нарушения в процессе возведения зданий

Защитные и защитно-декоративные покрытия

Полное или частичное отсутствие защитного покрытия на сваях (ростверке)

Нарушения при изготовлении свай

Фундаменты ленточные крупноблочные сборно-монолитные, фундаменты отдельно стоящих стен технических подполий

Горизонтальные и вертикальные поверхности

Общие деформации в вертикальной или (и) горизонтальной плоскости (искривления, перекосы, прогибы, выпучивания и др.)

Эксплуатационные факторы; неравномерная осадка; пучение грунта; уменьшение устойчивости грунта и др.

Бетон фундаментов, стен

Разломы или трещины шириной более 0,3 мм

Высолы и следы сырости на стенах технического подполья

Нарушение в технологии производства работ и изготовлении цокольных панелей, устройстве фундаментов и стен

Стыки блоков и цокольных панелей

Трещины в растворе швов стыков

Отклонения от технологии производства работ. Эксплуатационные факторы

Выпадение раствора из стыков и мест сопряжений; разрушение бетона в зоне стыков по краям панелей и мест сопряжений

Увлажнение бетона в зоне стыков блоков и панелей

Эксплуатационные факторы: повреждения гидроизоляции; повышение уровня грунтовых вод и др.

Диагностика каменных и армокаменных конструкций

При обследовании каменных и армокаменных конструкций прежде всего выделяются наиболее ответственные несущие конструкции. С помощью приборов устанавливают степень отклонения от проектного положения. Особое внимание уделяется местам опирания перемычек, балок, плит перекрытия и покрытия, характеру сопряжения стен между собой.

Среди причин возникновения дефектов следует выделить: механические, динамические, температурно-влажностные воздействия, а также дефекты, обусловленные неравномерностью осадок основания. Последние, как правило, приводят к наиболее значительным дефектам.

В зависимости от характера изменения осадки фундаментов вследствие технической эксплуатации зданий и других техногенных процессов возможно развитие растягивающих напряжений в кладке, приводящих к образованию трещин. Основные варианты развития трещин состоят в (рис. 2.12):

1 – осадке средней части здания за счет просадочных явлений в грунтах основания. Она вызывает параболические кривые, образованные сетью трещин, расширяющихся книзу и наклоненных к центральной оси здания;

2 – осадке крайних частей здания, что вызывает параболические кривые, образованные сетью трещин, расширяющихся кверху и наклоненных к краям здания;

3 – разломе здания вследствие максимальных осадок крайних частей здания и минимальной осадки в центральной части. Образуется сквозная вертикальная, расширяющаяся кверху трещина. Причиной может служить местная подпирающая опора в грунте основания центральной части здания;

4 – просадке части здания, приводящей к образованию вертикальной извилистой трещины одинаковой толщины раскрытия.

Рис. 2.12. Вид трещин в каменных стенах зданий при основных видах осадки грунта оснований а – осадка средней части здания; б – осадка крайних частей здания; в – разлом здания; г – просадка части здания; R – сопротивление грунта основания

Вторая группа воздействий, приводящая к трещинообразованию кирпичной кладки, относится к конструктивным деформациям и включает три стадии напряженно-деформированного состояния.

1-я стадия – начало трещинообразования происходит при нагрузках, составляющих 40-60 % разрушающих, при кладке на слабых растворах (менее 1 МПа), 50-70 % – при кладках на растворах средней прочности (1-2,5 МПа), 70-90 % – на прочных растворах (более 5 МПа). Эта стадия включает появление трещин, распространяемых на высоту 2-3 рядов кладки, совпадающих с вертикальными швами кладки. Появление трещин свидетельствует о превышении нагрузки несущей способности кладки;

2-я стадия – при возникновении значительных напряжений в кладке. Она характеризуется появлением вертикальных трещин в нескольких рядах кладки;

3-я стадия трещинообразования соответствует аварийному состоянию.

На рис. 2.13 приведена схема распределения нормальных и касательных напряжений в кирпичной кладке, моделируемой пластиной с прямоугольными отверстиями. При равномерно распределенной нагрузке максимальные нормальные напряжения концентрируются на границе отверстий, а касательные – в простенках. Примерное соотношение напряжений приведено на эпюрах по характерным сечениям.

Рис. 2.13. Распределение напряжений в стене-пластине с проемами и выпучивание кирпичных простенков а – нормальные напряжения; б – касательные напряжения; в – схема деформаций; г – расчетная схема

Определяющее влияние на концентрацию напряжений оказывает процесс старения кладки (выветривание и разрушение швов) в результате влагомассопереноса и влияния цикличных процессов замораживания-оттаивания. В результате обжатия швов в определенной части кладки возникают напряжения, превышающие ее несущую способность.

Методом визуального наблюдения легко устанавливается наличие трещин, сколов. По характеру их расположения можно судить о причинах возникновения дефектов. Так, при увеличении нагрузки выше расчетной наблюдается образование вертикальных трещин различной степени раскрытия. Недостаточная длина опирания перемычек, неправильное выполнение кирпичной кладки над проемами, устройство перемычек над витринными проемами без устройства портала приводят к характерному образованию трещин. Причиной образования трещин в простенках могут служить: применение материалов, не отвечающих проектным требованиям; некачественная перевязка швов в кладке; неправильное выполнение температурных и деформационных швов; нарушение технологии производства работ в зимнее время; перегрузки при надстройке здания и др.

Появление наклонных трещин может иметь различные причины. В первую очередь они вызваны неравномерностью осадок фундамента из-за недостатков в подготовке основания, смещения осей, наложения дополнительных нагрузок от пристраиваемых зданий. Нарушение эксплуатационного режима здания происходит в результате подтопления или вымывания основания атмосферными или техническими водами, увлажнения грунта из-за протечек, понижения уровня грунтовых вод при производстве работ вблизи возведенного здания и др.

Деформации внутренних стен в местах примыкания к наружным вызваны более высокой нагрузкой и отсутствием в этих местах армирования кладки.

На рис. 2.14,в приведены характерные примеры образования трещин для рассмотренных случаев.

В процессе обследования очень важно знать динамику раскрытия трещин во времени. Для этой цели на трещины устанавливают гипсовые, стеклянные или металлические маяки. Гипсовые и стеклянные маяки устанавливают на стене, предварительно очищенной от штукатурки. Используются цементные или гипсовые растворы. Металлические маяки изготавливают из кровельной стали и крепят к стене клеем или дюбелями. На маяках выставляются номер и дата установки. Динамика развития деформаций регистрируется в журнале наблюдений. Глубину трещин определяют с помощью щупов и игл, а ширину раскрытия – с помощью микроскопов МПБ-2, Мир-2. Пределы измерений МПБ-2 составляют до 6,5 мм, а Мир-2 – от 0,015 до 0,6 мм.

Рис. 2.14. Характерные примеры образования трещин в кирпичных стенах а – вертикальные трещины в простенках; б – то же, в зоне заделки перемычек; в – деформации внутренних стен в местах примыкания к наружным стенам

Важным этапом обследований является процесс определения физико-механических характеристик кладки. Этому этапу предшествуют качественная оценка кладки и ее соответствие техническим требованиям: толщина швов и перевязка, соблюдение горизонтальности рядов, вертикальность стен и др. Для механических испытаний материала каменной кладки из малонагруженных элементов конструкций извлекаются образцы или выбуриваются керны, которые испытываются с использованием стандартного оборудования.

При зондировании отбирают пробы материала не менее чем через каждую четверть толщины стены. Число точек зондирования принимают в зависимости от размеров здания и его этажности (таблица 2.6).

Полное меню
Основные ссылки

Вернуться в “Каталог СНиП”

Рекомендации Рекомендации по проектированию и устройству свайных фундаментов с погружением свай до заданной отметки.

МИНИСТЕРСТВО СТРОИТЕЛЬСТВА В РАЙОНАХ УРАЛА
И ЗАПАДНОЙ СИБИРИ СССР

Уфимский научно-исследовательский и конструкторский
институт промышленного строительства
(Уфимский НИИпромстрой)

РЕКОМЕНДАЦИИ
по проектированию и устройству свайных фундаментов с погружением свай до заданной отметки

ВВЕДЕНИЕ

Институтом НИИпромстрой разработана методика выбора глубины погружения свай, при которой резко сокращается (или полностью упраздняется) недобивка свай и последующая их срубка. В 1976 г . был составлен ведомственный нормативный документ – “Инструкция по применению свайных фундаментов с погружением свай до заданной отметки” ВСН-29-76 Минпромстроя СССР, которая внедрялась в организациях Минпромстроя СССР. За истекший период накоплен значительный опыт использования методики, изложенной в этом документе, составлены программы для расчетов на ЭВМ. Настоящие Рекомендации учитывают этот опыт и представляют переработанный вариант упомянутой Инструкции.

Расчеты, приводимые в настоящих Рекомендациях, должны выполняться на ЭВМ. Программа таких расчетов НЖПС (для ЭВМ EC -1022) передается на договорной основе.

Рекомендации составлены специалистами лаборатории механики грунтов и отдела механизации и автоматизации Рыжковым И.Б., Еникеевым А.Х. (разделы 5-7), Еникеевым В.М., Бурангуловым Р.И., Норшаяном А.В. и др. Общая редакция Рыжкова И.Б. Рекомендованы к изданию секцией ученого совета Уфимского НИИпромстроя (протокол № 3 от 8.12.87 г.).

1. ОБЩИЕ положения

1.1. Настоящие Рекомендации предназначены для проектирования и возведения свайных фундаментов объектов массового строительства в наиболее типичных для объектов Минуралсибстроя СССР грунтовых условиях: пылевато-глинистые и песчаные грунты с любим характером напластования, но не обладающие особыми свойствами (просадочностью, набухаемостью, засоленностью и проч.), отсутствие вечной мерзлоты, крупных валунов или других каменистых включений. В упомянутых особых грунтовых условиях применение Рекомендаций не исключается, но требует использования дополнительных нормативных или рекомендательных документов, регламентирующих строительство в таких условиях.

1.2. Сокращение отходов железобетона при забивке свай рекомендуется достигать за счет обоснованного выбора глубин их погружения, учитывающего мощность имеющегося сваебойного оборудования и прочность свай, а также за счет более эффективного контроля за точностью забивки.

1.3. В зависимости от конкретных условий и особенностей проектируемых зданий или сооружений длина свай может приниматься:

1) путем установления точной глубины погружения свай, унификации этой глубины в пределах всего фундамента или отдельных его участков и обеспечения условий, при которых сваи погружаются до заданной отметки с точностью, исключающей необходимость срубки: отказы в этом случае служат лишь средством выявления опасных для сооружения ослабленных участков основания, пропущенных при инженерных изысканиях.

2) традиционно, когда строго регламентируется отказ свай при забивке (или добивке), а точность достижения проектной глубины является второстепенным фактором, и недобивка до 0,5 м считается допустимой. Сваи, не достигшие проектной отметки, срубаются до требуемого уровня.

Решение о целесообразности названных способов рекомендуется принимать в соответствии с разделом 3 настоящих Рекомендаций.

Снижение материалоемкости свайных фундаментов в настоящих Рекомендациях предлагается достигать путем применения первого способа во всех случаях, где он аффективен, и минимизаций отходов железобетона в случаях, когда необходимо принимать второй способ.

Примечание . Первый способ в дальнейшем именуется “погружение свай до заданной отметки, второй способ – погружение свай до заданного отказа”.

1.4. Для выполнения расчетов составлена программа НИИПС для ЭВМ EC -1022 (языки ПЛ-1, ФОРТРАН), которая должна использоваться совместно с данными Рекомендациями.

2. ТРЕБОВАНИЯ К ИЗЫСКАНИЯМ

2.1. Объем и состав изыскательских работ для объектов, проектируемых на свайных фундаментах с уменьшенным объемом недобивки свай (или с его полным исключением), должны гарантировать повышенную подробность оценки изменчивости свойств грунтов (в плане и по глубине). Для этого рекомендуется повышать долю скоростных методов определения сопротивлений свай (экспресс-методов) и соответственно увеличивать число точек обследования площадки. В качестве основного экспресс-метода рекомендуется использовать статическое зондирование высокопроизводительными установками типа С-832М. Рекомендуемые объемы зондирования приведены в рекомендуемом приложении.

2.2. Точки зондирования должны равномерно охватывать всю территорию проектируемого здания или сооружения. При выявлении повышенной неоднородности грунта “сетку” точек зондирования следует сгущать по всей обследуемой территории. Частота расположения точек зондирования в плане зависит от сложности грунтовых условий и в среднем должна приниматься из расчета 1 точка на 50. 100 м . При групповом расположении объектов рекомендуется равномерное размещение точек зондирования по всей площадке, охватывая как территорию зданий, так и промежуточные зоны.

2.3. При выполнении зондирования и расчетах несущей способности свай следует пользоваться существующими нормативными и рекомендательными документами, проводя дополнительные расчеты в соответствии с настоящими Рекомендациями.

3. ОЦЕНКА ЦЕЛЕСООБРАЗНОСТИ ПРОЕКТИРОВАНИЯ ФУНДАМЕНТОВ С ПОГРУЖЕНИЕМ СВАЙ ДО ЗАДАННОЙ ОТМЕТКИ

3.1. Целесообразность применения свайных фундаментов с погружением свай до заданной отметки рекомендуется оценивать на стадии проектирования, опираясь на данные изыскания и сведения об имеющихся сваепогружающих механизмах.

3.2 Оценка технико-экономической целесообразности применения свайных фундаментов с погружением свай до заданной отметки может проводиться путем специальных расчетов или без таковых на основании анализа инженерно-геологических разрезов и особенностей проектируемых сооружений. Методику такой оценки рекомендуется принимать на основании пп.3.3. 3.5.

3.3. Решение о нецелесообразности забивки свай до заданной отметки можно принимать без специальных расчетов при наличии в рассматриваемом диапазоне глубин четко выраженного несущего слоя в виде пласта крупнообломочных или скальных пород с неровной или наклонной кровлей. В этом случае забивка свай должна вестись до заданного отказа, а недобитые части свай должны срубаться.

3.4. Забивка свай на необходимую глубину обеспечивается при соблюдении следующих требований:

– отказ свай S при выбранном молота на участке с наиболее прочными грунтами ожидается не менее заранее установленной величины S . Для объектов массового строительства рекомендуется принимать S = 0,5 см ;

– число ударов выбранного молота не превышает критического значения, устанавливаемого в зависимости от ударной стойкости выбранных свай, методика проверки этих условий приведена в разделе 4.

3.5. В случаях, не охваченных в п.3.2, рекомендуется производить упрощенную количественную оценку материалоемкости следующих двух вариантов фундаментов:

1) сваи погружены на различную глубину до заданной одинакового отказа (в предположении, что этот отказ соответствует нечерпанию погружающей способности молота), недопогруженные части свай срубаются;

2) сваи погружаются на одинаковую глубину, соответствующую минимальному заглублению свай в первом варианте, так что срубка сваи исключается.

Оценку целесообразности этих вариантов рекомендуется производить по данным зондирования, пользуясь упрощенным критерием, приведенным в п.3.6.

3.6. Материалоемкость кустового или ленточного фундамента с погружением свай до заданной отметки следует считать ниже материалоемкости фундамента с погружением свай до отказа, если выполняется следующее условие:

где Fu . n -среднее (нормативное) сопротивление свай в кН с глубиной погружения h в м;

h – рассматриваемая глубина погружения свай, условно принимаемая за глубину, соответствующую второму варианту в п.3.5;

– величина, отражающая интенсивность нарастания среднего предельного сопротивления сваи с ростом глубины в м/кН (в практических расчетах удобно принимать изменчивость Fu . n . в интервале от h до h + 1 м );

V – величина, принимаемая при низком ростверке равной 0,8, для остальных свайных конструкций – 0,6.

3.7. Оценку трудоемкости свайных работ следует производить, принимая приближенно трудозатраты на срубку каждой сваи и удаление ее обломков равными затратам на ее забивку. Доля свай, подвергающихся срубке, в таких расчетах может приниматься равной 70 % от общего их числа.

3.8. Число участков, в пределах которых принимается единая глубина погружения свай, должно выбираться таким образом, чтобы на каждом участке коэффициент вариации предельных сопротивлений свай не превышал 0,3.

3.9. Вопрос о применении свайных фундаментов с погружением свай до заданной отметки должен решаться совместно с вопросом о целесообразности тех или иных свайных конструкций. Рекомендуется применение фундаментов с погружением свай до заданной отметки для зданий на сваях-колоннах, при безростверковых свайных фундаментах, при односвайных фундаментах, в которых срезка свай вызывает затруднения (комбинированных свайных фундаментах и проч.).

4. ВЫБОР ГЛУБИНЫ ПОГРУЖЕНИЯ СВАЙ

4.1. При проектировании фундаментов с погружением свай до заданной отметки должны соблюдаться следующие условия:

Характерные дефекты и повреждения фундаментов

При ведении работ в аварийных зданиях степень риска должна быть определена достаточно объективно. Ветхие и аварийные строительные конструкции, подлежащие восстановлению, должны быть временно закреплены. Например, при работе под плитами перекрытия, опирание которых в результате образования трещин стало меньше проектного, необходимо установить временные подпорки из бревен или других материалов.

1. Усиление фундаментов. Целью операции является уширение или углубление фундаментов либо перенос части нагрузки от веса стен на выносные опоры.
Все работы, связанные с усилениями фундамента, должны осуществляться по следующей схеме: при угрозе обрушения стены после раскопки фундамента она должна быть предварительно укреплена разгрузочными балками, фундамент нужно откапывать не полностью, а захватками и не одновременно (рис. 1).

Рисунок 1. Усиление фундаментов: а – простое уширение фундамента; б – углубление и уширение фундамента; в -уширение фундамента железобетонными балками; г, д- перенос нагрузки от веса стены на буронабивные (или забивные) сваи, выполненные с двух сторон (г) или с одной стороны (д); е – перенос нагрузки от веса стены на монолитные железобетонные приливы; ж, з – переустройство ленточного фундамента в плитный ниже подошвы фундамента (ж) или в уровне подушек со шпоночными связями (з); 1 – стена; 2 -усиливаемый фундамент (материал фундамента на рисунках изображен условно); 3 – поперечная разгружающая балка (двутавр или швеллер); 4 – выборка паза под шпоночное зацепление; 5 – монолитный бетон; 6 – продольная разгружающая балка (двутавр или швеллер); 7 – болт; 8 – арматурный каркас (по расчету); 9 -усиливающая монолитная подушка; 10 – усиливающие железобетонные балки; 11 -буронабивные сваи; 12 -монолитные железобетонные приливы (балки); 13 – усиливающая монолитная железобетонная плита.

Захватки откапывают через одну. Работы на новой захватке нельзя начинать пока не будет зарыта предыдущая. Ширина и длина захватки определяется размерами конструктивных материалов, применяемых для усиления, и обычно не превышает 1-2 м. Например, если проводят усиление фундаментов, в нижнем основании которого использованы сборные железобетонные подушки, длина захватки не должна превышать 60-70 см, так как длина такой подушки может быть 1,2 или 2,4 м. Если использована подушка длиной 1,2 м, то при открытии захватки длиннее 1,2 м при углублении фундамента она просто упадет вниз. Грунт в отрытых захватках на площадке, где будет размещено усиление, должен быть в нетронутом естественном состоянии.

2. При необходимости радикального увеличения несущей способности фундамента ленточные фундаменты переустраивают в плитные с детальным расчетом армирования плиты.

Дефекты и повреждения фундаментов

1. Увлажнение от грунтовых и атмосферных вод и промерзание стен под окнами первого этажа (рис. 2).

Рисунок 2. Увлажнение стен с последующим промерзанием: а – от разрушения защитного покрытия цоколя; б – от разрушения гидроизоляции.

Причины повреждений фундаментов:
а) повреждение гидроизоляции при деформации фундаментов и стен;
б) старение гидроизоляции;
в) некачественное устройство или отсутствие гидроизоляции;
г) повреждение облицовки цоколя или применение в качестве облицовки неморозостойкого материала;
д) поднятие уровня грунтовых вод (естественное или искусственное в результате подтопления) выше расчетного;
е) разрушение отмостки или подсыпка грунта вокруг здания выше расположения горизонтальной гидроизоляции либо низкое расположение гидроизоляции (ниже на 10-14 см от отмостки) и отсутствие второй гидроизоляции по цоколю.

Способы устранения повреждений фундаментов:
Введение гидроизоляции в цоколь взамен разрушенной или отсутствующей (рис. 3). Пробивают отверстие в цоколе высотой в 2-3 кирпича кладки, выравнивают цементным раствором и укладывают гидроизоляцию из двух слоев на битумной мастике, каждый слой должен иметь свободный конец не менее 20 см. Пробитое отверстие закладывают кирпичом.

Рисунок 3. Восстановление разрушенной гидроизоляции.

2. Выщелачивание бетонных конструкций фундамента либо кристаллизационное разрушение бетона (рис. 4).

Рисунок 4. Разрушение материала фундамента под воздействием мягкой (щелочной) или соленой воды.

Причины повреждений фундаментов:
а) воздействие на бетон мягкой (щелочной) воды;
б) воздействие на бетон соленой воды.

Способы устранения повреждений фундаментов:
а) Отвести от фундаментов агрессивные воды или понизить их уровень устройством дренажной системы;
б) Восстановить и защитить конструкцию от агрессивной воды (рис. 5). Для этого нужно сделать выемку грунта захватками по 0,8 м до основания фундамента, очистить пораженные места и закидать их цементно-песчаным раствором (1:3), а также устроить защитную рубашку из пропитанного битумом кирпича с прослойкой рубероида на асфальтовой мастике. После окончания всех работ выемку нужно заполнить жирной глиной.

Рисунок 5. Восстановление фундамента: 1 – жирная глина; 2 – кирпич, пропитанный битумом; 3 – три слоя рубероида на мастике; 4 – цементный раствор.

3. Расслоение кладки фундамента (рис. 6).

Рисунок 6. Расслоение кладки фундамента.

Причины повреждений фундаментов:
а) отсутствие перевязки в каменной кладке;
б) недостаточная прочность кладки;
в) перегрузка фундамента (в связи с надстройкой и т. п.).

Способы устранения повреждений фундаментов:
Обычно делают уширение фундамента или перенос части нагрузки на выносные балки с восстановлением фундамента (см. рис. 1).

4. Разрыв фундамента по высоте (рис. 7).

Рисунок 7. Разрыв фундамента по высоте силами морозного пучения грунтов.

Причины повреждений фундаментов:
Морозное пучение вследствие неправильного конструирования и возведения фундамента (засыпка пазух смерзающимися грунтами, склонными к пучению, подтопление фундамента при поврежденной отмостке или поднятие уровня грунтовых вод).

Способы устранения повреждений фундаментов:
Удаление пучинистого грунта вдоль фундамента и цементирование места разрыва. Вместо пучинистого грунта пазухи нужно заполнить непучинистым грунтом. После этого следует восстановить отмостку. При необходимости конструкция оборудуется дренажной системой и устраивается утепленная отмостка, пазухи засыпаются дренажным материалом.

5. Трещины в плите фундамента или неравномерная его осадка.
Причины повреждений фундаментов:
а) неправильное соотношение размеров ступеней подошвы фундамента;
б) недостаточная ширина фундамента;
в) увеличение нагрузки на фундамент в связи с надстройкой;
г) снижение несущей способности основания в связи с его увлажнением.

Способы устранения повреждений фундаментов:
Усиление фундамента путем его уширения одним из способов, указанных выше (см. рис. 1).

Все вышеперечисленные способы восстановления фундаментов касаются непосредственно самих фундаментов. Существуют и другие способы, в которых усиливается не фундамент, а грунт основания под ним. Эти способы предполагают закачивание в грунт под фундаменты цементных, силикатных или смоляных растворов либо электрохимическое или термическое закрепление грунтов. Хотя эти способы и менее трудоемки, они требуют специального оборудования и в нашей статье не приводятся.
И еще одно замечание: заделку трещин на зданиях, особенно кирпичными замками, нужно проводить после стабилизации процесса осадки. Для определения времени окончания осадки на трещины здания устанавливают маяки (рис. 8).

Рисунок 8. Наблюдение за развитием трещин: 1 – трещина; 2 – маяк (цементный на наружных или алебастровый на внутренних стенах).

Как правило, их ставят на очищенную поверхность конструкции перпендикулярно трещине. На маяки наносят дату установки и наблюдают за ними в течение 20 дней. В журнале со схемой установки маяков отмечают дату появления на маяках разрывов и их ширину. После разрыва маяка на его месте устанавливается новый. Журнал впоследствии может пригодиться при привлечении специалистов.

Ссылка на основную публикацию
Adblock
detector