Расчет диагональной стропильной ноги пример

Как сделать расчет стропильной ноги, какие нагрузки учитывать

Расчет стропильной системы должен осуществляться с предельной точностью, руководствуясь особенностями места строительства, планируемой нагрузкой на систему стропил, размерами и конфигурацией постройки, а также используемыми материалами для перекрытия кровли. В этой статье речь пойдет о том, как вычислить длину стропил крыши.

Нагрузки, которые испытывают стропила

Для скатной крыши должен быть создан прочный каркас, являющийся ее несущей конструкцией. Еще при проектировании должен быть проведен расчет стропильной ноги для того, чтобы определиться с длиной и сечением элементов, на которые будут приходиться главные нагрузки.

Нагрузки, которые действуют постоянно, создаются самим кровельным пирогом, в который входит наружный кровельный материал, обрешетка, тепло-, паро- и гидроизоляционный материал, а также внутренняя обшивка чердака или мансарды. В эти нагрузки входит и вес всевозможных объектов, которые будут расположены на крыше или закреплены с внутренней стороны стропильной системы.

Переменные нагрузки состоят из воздействий, которые порождаются ветром, осадками, а также сейсмической активностью. Сюда же относится и вес человека, который в будущем будет проводить ремонт, плановое обслуживание или очистку крыши.

Расчет массы кровельного пирога

Перед тем как провести расчет длины стропильной ноги, потребуется вычислить массу кровельного пирога. Для этого нужно будет взять простую формулу, по которой нужно плюсовать массы одного квадратного метра всех слоев кровельных материалов, а результат умножить на 1,1 – коэффициент коррекции, который улучшит надежность конструкции на 10 %.

Получается, что обычный расчет массы кровли можно выразить так: (масса 1 м 2 обрешетки + масса 1м 2 кровельного материала + масса 1 м 2 гидроизоляционного покрытия + масса 1 м 2 слоя утеплителя) × 1,1 = масса кровельного пирога, в которую входит коэффициент коррекции. Если планируется укладывать один из распространенных кровельных покрытий, то нагрузка на стропильную систему не выйдет за пределы 50 кг/м 2 .

Создавая проект односкатной или двускатной кровли, достаточно опираться лишь на массу кровельного пирога, равную 50 кг/м 2 . По такому принципу можно соорудить каркас кровли повышенной прочности, чтобы в будущем можно было изменить тип кровельного материала без повторного расчета системы стропил.

Снеговые и ветровые нагрузки на примере

Длина стропильной ноги должна быть подобрана таким образом, чтобы кровля смогла удерживать большие нагрузки снеговых осадков. Снег будет давить на кровлю тем сильнее, чем меньший угол уклона у нее будет. Если возводится практически плоская односкатная кровля, то сечение стропильных ног должно быть как можно больше, а их шаг – как можно меньше. Кроме этого, если уклон кровли менее 25º, то потребуется систематически проводить ее очистку.

Перед тем как посчитать длину стропил нужно определить снеговую нагрузку, для чего можно воспользоваться формулой S = Sg × µ, где:

  • Sg – значение снегового покрова на 1 м 2 , которое выбирается из таблиц СНиП, и определяется регионом, в котором возводится дом;
  • µ – корректировочный коэффициент, который зависит от угла наклона кровли: для ската с уклоном до 25° – 1,0; а для ската с уклонами 25-60° – 0,7.

Для тех скатов, угол наклона которых находится на отметке более 60 °, снеговые нагрузки в расчет не берутся.

Ветровые нагрузки можно вычислить по формуле W = Wo × k, где:

  • Wo – справочная величина вашего региона (можно найти в справочных таблицах);
  • k – корректировочный коэффициент, который определяется высотой постройки и типом местности – открытого типа (поле, степь или побережье), или закрытого (лес, застройка).

Зависимость длины стропильной ноги и сечения

К примеру расчет стропильной ноги будет сделать легче, если представить, что почти вся крыша состоит из треугольников. Имея длину стен строения, уклон ската или высоту конька, и воспользовавшись теоремой Пифагора, можно определить длину стропильной ноги от стены до конька. К полученному результату нужно будет прибавить величину свеса карниза. Иногда карнизный свес создают путем монтажа кобылок – досок для увеличения длины стропил. Длина кобылок также приплюсуется к длине стропил при просчете площади кровли – это необходимо для получения точного объема материала, необходимого для установки кровельного пирога.

Для того чтобы понять, какого сечения нужна доска или брус, нужно взять специальную таблицу стандартов, в которой будут указаны зависимости таких параметров как толщина, длина и шаг стропильной ноги.

Как правило, сечение стропил колеблется от 40×150 мм до 100×250 мм. Перед тем как определить длину стропил нужно учесть, что она зависит от уклона ската и длины пролета между противоположными стенами. Чем больше уклон ската, тем длиннее должны быть стропила, а значит и их сечение тоже должно быть достаточным для придания конструкции необходимой прочности. При таком подходе нагрузка от снежных осадков снизится, а шаг между стропилами также можно будет увеличить. Нужно помнить еще и о том, что чем меньше шаг будет между стропилами, тем большую нагрузку будет испытывать стропильная нога.

Каждый мастер, которого вы попросите привести пример расчета стропил, вам скажет, что для того чтобы каркас кровли получился максимально прочным, нужно учитывать характеристики деревянных элементов и толщину металлических узлов.

Несущая часть кровли должна быть достаточно жесткой для того, чтобы она не прогибалась вследствие нагрузок. Прогибы могут появляться, если во время проектирования были подобраны неправильные сечения элементов кровли и шаг монтажа стропил. Если оказалось, что прогиб появился после установки кровли, можно установить дополнительные подкосы для того, чтобы конструкция получилась более жесткой. При длине стропильной ноги более 4,5 м, без монтажа подкосов прогиб может появиться при использовании стропильных ног любого сечения. Это нужно учитывать в любом случае, определяя, как вычислить длину стропила.

В общем, определяясь с толщиной бруса, отталкиваются от общей нагрузки на кровлю. Чем он будет толще, тем крыша получится прочнее, и не нужно будет волноваться о том, что может возникнуть прогиб. Однако это ведет к увеличению общей массы стропильной системы, следовательно, нагрузки на всю конструкцию и фундамент будут выше.

При сооружении жилых домов шаг между стропилами составляет от 60 до 100 см и определяется:

  • расчетной нагрузкой;
  • сечением стропил;
  • типом используемого кровельного покрытия;
  • уклоном скатов;
  • шириной слоя теплоизоляции.
Читать еще:  Минимальный угол и расчет уклона крыши

Количество устанавливаемых стропильных ног зависит, в первую очередь, от шага их монтажа. Сначала определяют нужный шаг, после чего длину стены делят на полученное значение, плюсуют к результату единицу и округляют. Результатом деления длины стены на полученное число будет искомый нами шаг между стропилами. Учитывая необходимое количество стропил на одном скате нужно брать во внимание и расстояние между осями стропильных ног.

Металлические стропильные системы

При возведении частного дома к применению стропильной системы из металла прибегает крайне редко, потому что металлический каркас нужно устанавливать с использованием сварки, а это несколько усложняет процесс. Естественно, что изготовление конструкции можно осуществит и на производственных мощностях, но в данном случае без привлечения спецтехники не обойтись. Проект металлической кровли должен быть создан с максимальной точностью с соблюдением точных размеров всех элементов, так как в процессе возведения подогнать их до нужных размеров уже не представится возможности.

У металлических систем стропил много своих плюсов. Во время эксплуатации не возникает прогиб стропил даже на больших пролетах и без монтажа дополнительных узлов для улучшения прочности и надежности. Стальные стропила могут укладываться на пролеты, превышающие 10 м, при этом под расчетными нагрузками прогиб не возникнет.

Рассчитывая стропильную систему из стальных профилей, учитывайте массу самого материала, нагрузку на все строение и фундамент. Высокая прочность стропил из такого материала, позволяющая не прогибаться конструкции, дает возможность уменьшить количество узлов в сравнении с элементами из дерева.

Кроме того, проводить расчет стального каркаса для кровли нужно, исходя из данных по прочности элементов конструкции, определяющейся их формой и толщиной. Учитывайте также длину пролетов и уклон скатов. Мауэрлат из стали для системы стропил должен быть тщательно закреплен на верхушке стены.

Вышеизложенный материал позволит вам подробно разобраться в том, как рассчитать стропильную ногу, так что вы без проблем сможете выполнить все строительные работы на данном этапе, и у вас появится свой пример расчета стропильной системы.

Диагональные стропильные ноги вальмовых крыш

На вальмовых крышах и крышах с ендовами необходимо устанавливать стропила направленные к углам стен (внешним или внутренним). Эти стропильные ноги называются диагональными или накосными. Диагональные стропила длиннее обычных, кроме того, на них опираются укороченные стропила скатов (стропильные полуноги), которые называются нарожниками. Поэтому накосные стропила, как правило, несут нагрузку примерно в полтора раза большую, чем обычные стропила. Длина диагональных стропил превышает стандартную длину досок, поэтому стропила делают спаренным. Спаривание накосной стропильной ноги решает сразу три задачи: во-первых, удвоенное сечение способно нести увеличенную нагрузку; во-вторых, сплачивание досок позволяет получить длинную неразрезную балку; в-третьих, спаривание стропил унифицирует типоразмер применяемых деталей. Сдваивание стропил позволяет применять для устройства накосных стропил те же доски, что и для обычных стропил. Иными словами, применение досок одной высоты для изготовления всех видов стропил упрощает конструктивные решения узлов крыши.

Для получения многопролетности под накосную ногу устанавливают одну или две опоры.Накосные стропила можно представить, как раздвоившийся и наклонившийся коньковый прогон. Сращивание досок по длине делают так, чтобы стыки получались на расстоянии 0,15L (рис. 43) от центра опор, таким образом, длину досок для изготовления накосной стропильной ноги нужно подбирать в зависимости от длины пролетов, следовательно, от количества опор. Например, для вальмовой крыши нужно сделать накосную ногу длиной 10 м, для этого можно использовать доски длиной по 5,5 м и установить одну опору посредине. Получим двухпролетную неразрезную балку. Однако расположение опоры под средней частью стропила не отвечает схеме приложенной к нему нагрузки, поэтому ее устанавливают на расстоянии 1/4 пролета от верха стропила. Тогда для десятиметрового стропила логичнее использовать доски 7 и 3 м.

Опора под накосную стропильную ногу — это обычный подкос либо стойка из двух спаренных досок или бруса. Стойку опирают через деревянную подкладку и гидроизоляционный слой прямо на перекрытие, если оно из железобетонных плит и проверено на сосредоточенную силу. Подкос устанавливают под углом к горизонту 45–53°, а низ его упирают в лежень. Угол установки подкоса не играет решающей роли, главное условие, чтобы подкос поддерживал стропило в месте максимального сосредоточения нагрузки (рис. 44).

рис. 44. Место установки дополнительных опор под диагональные стропила

Расчет сечения диагональных стропил можно произвести по формулам строительной механики, но как правило, они не нуждается в расчете. Сделанные из двух сечений рядовых стропильных ног они выдерживает ту нагрузку, на которую были рассчитаны рядовые стропила. Стропила, перекрывающие пролет до 7,5 м, подпираются только подкосом в верхней части пролета. Если накосное стропило перекрывает пролет до 9 м, в нижней части (l/4) устанавливают еще одну опору: стойку (если позволяет перекрытие), либо шпренгельную ферму. Под стропило длиной более 9 м желательно ввести третью опору по центру, здесь можно установить только стойку, значит, перекрытие должно быть железобетонным и проверенным на сосредоточенную силу либо в его конструкцию включают балку, на которую можно будет опереть стойку.

Шпренгельная ферма, это балка из бруса, прокинутая на угол по пересекающимся наружным стенам. Чтобы балка особо не прогибалась (не «играла»), в балку врезают стойку (шпренгель) и устанавливают два подкоса. В большинстве случаев при строительстве небольших загородных домов, эту ферму не нужно рассчитывать, ее элементы принимаются конструктивно из бруса или спаренных досок общим сечением 100×100 — для стоек, 50×100 — для подкосов и 100×150(h) мм — для балки.

рис. 45. Опирание накосных (диагональных) стропильных ног на прогон в центре вальмовой крыши

Опирание диагональной стропильной ноги в коньке зависит от расположения и количества промежуточных опор и конструкции основных наслонных стропил:

  • при наличии одного прогона посредине крыши диагональную стропильную ногу опирают на консоли прогона (рис. 45). Консоли выпускают сантиметров на 10–15 за подстропильную раму, лишнее потом проще отпилить, чем нарастить недостающее;
  • при наличии двух прогонов и стропил из досок, на прогоны устанавливается шпренгельная конструкция состоящая из горизонтальной балки и стойки, на которую крепится верх накосных стропил (рис. 46);
  • при наличии двух прогонов и стропил из брусьев, в коньке к стропилам пришивают прибоину (коротыш доски толщиной не менее 5 см) и опирают на нее накосные стропила.
Читать еще:  Как сделать гараж в доме с фундаментом в симс 3?

рис. 46. Опирание накосных (диагональных) стропильных ног вальмовой крыши на шпренгель, при двух подстропильных рамах

Низ накосных стропил для посадки на шпренгель, консоль прогона или на прибоину, подрубается в горизонт и крепится гвоздями. При необходимости накосные стропила дополнительно прикрепляют к опорам металлическими хомутами или тугими проволочными скрутками.

Накосные стропила, расположенные в ендовах, подпереть шпренгельной фермой нельзя, так как угол стен, образующий ендову, внутренний, поэтому их подпирают стойками либо, если не позволяет перекрытие, подкосами. В этом случае, в отличие от диагонального стропила вальмы, максимальная нагрузка приходится на нижнюю часть стропильной ноги! Сюда и нужно упирать подкос (рис. 44). Однако угол наклона подкоса опертого низом в лежень получается слишком острым, поэтому подкос либо опирают низом в угол стен, либо ставят два подкоса (один от лежня, другой от угла стен) упирая их верхом друг в друга, либо пренебрегают точкой максимальной нагрузки и ставят один подкос от лежня с углом к горизонту 45–53°. Последний вариант, казалось бы, неправильный — подкос подпирает стропило совсем не там, где нам нужно. Но не будем забывать, что введение под балку третьей опоры, делает ее неразрезной и двухпролетной, что увеличивает ее несущую способность. Так, что установки подкоса по последнему варианту, чаще всего, бывает вполне достаточным для обеспечения несущей способности всей наслонной стропилины удвоенного сечения.

рис. 47. Узлы накосных (диагональных) стропил вальмоваых крыш

Нарожники стыкуют к наслонному стропилу простым запилом — подпиливают верх нарожника в одну плоскость к диагональной стропилине, стыкуют и пришивают 2–3 гвоздями (рис. 47)..

В зависимости от принятой расчетной схемы: распорной или безраспорной, низ диагональных стропильных ног упирается непосредственно в мауэрлат или в балку, уложенную на угол стен, либо опирается на них. В этом смысле накосные стропила ничем не отличаются от обычных стропил. Они, как и обычные стропильные ноги, сделанные с тремя или двумя степенями свободы, могут передавать распор на стены или не передавать его.

Принято считать, что угол наклона диагональной стропильной ноги меняется относительно угла наклона рядовых стропил. Это действительно так, если рассматривать диагональную стропильную ногу как отдельный элемент. Однако если спроецировать ее поочередно на стропила скатов, которые она объединяет, то мы увидим, что углы образуемые проекциями равны углам скатов. Попробуйте нарисовать накосное стропило на чертеже фасада здания и вы убедитесь в этом сами. То, что углы проекций на скаты, равны углам скатов, очень важно понимать при строительстве крыши — отпадают ненужные вопросы.

При необходимости верхняя пласть накосной стропилины, уложенной на ребре крыши, стесывается под углом, а расположенные в ендове — желобком, для укладки на них обрешётки.

Установкой между рядовыми стропилами прибоины из доски толщиной не менее 5 см можно сделать так называемую датскую крышу (рис. 48). При необходимости места креплений прибоины к рядовым стропилам подпирают подкосами (подстропильными ногами), низ которых упирают в лежень или стойку либо вместо рядовых стропил устанавливают усиленную (спаренную) пару стропильных ног. В местах пересечения прибоины со стойкой или двумя стойками ее крепят к ним гвоздевым боем и подпирают коротышами (обрезками досок). Полученную на крыше вертикальную плоскость обшивают погонажным или листовым материалом и, чаще всего, используют для устройства на чердаке естественного освещения и вентиляции: монтируют под коньком окна.

рис. 48. Опирание накосных (диагональных) стропил для устройства Датской крыши

3.2. Расчет стропильной ноги

Предварительно, для определения нагрузок, задаемся сечением стропильной ноги 75х225 мм. Постоянная нагрузка на стропильную ногу подсчитана в табл. 3.2.

Таблица 3.2 Расчетная постоянная нагрузка на стропильную ногу, кПа

Элементы и нагрузки

Нагрузка на обрешетку (табл. 3.1)

Стропильная нога 0,075*0,225*5/0,95

Расчетная предельная нагрузка на стропильную ногу (сочетание постоянная плюс снеговая)

Геометрическая схема стропил

Схемы к расчету стропильной ноги показаны на рис. 3.2. При ширине коридора в осях =3,4 м расстояние между продольными ося­ми наружной и внутренней стен.

Расстояние между осями мауэрлата и лежня с учетом привязки к оси ( =0,2 м)м. Устанавливаем подкос под углом β = 45° (уклонi2 = 1). Уклон стропил равен уклону кров­ли i1 =i = 1/3 = 0,333.

Чтобы определить необходимые для расчета размеры можно вычертить геометрическую схему стропил в масштабе и измерять расстояния линейкой. Если мауэрлат и лежень находятся на одном уровне, то пролеты стропильной ноги можно определить по формулам

Высоты узлов h1 =i1l1 =0,333*4,35=1,45 м; h2: = i1l=0,333*5,8=1,933 м. Отметку высоты: ригеля принимаем на 0,35 м ниже точки пересечения осей стропильной ноги и стойки h = h2 0,35 (м) = 1,933 -0,35 = 1,583 м.

Усилия в стропильной ноге н ригеле

Стропильная нога работает как трехпролетная неразрезная балка. Просадки опор могут изменять опорные моменты в неразрезных балках. Если считать, что от просадки опоры изгибающий момент на ней стал равным нулю, то мож­но условно врезать шарнир в место нулевого момента (над опорой). Для расчета стропильной ноги с некоторым запасом прочности считаем, что просадка под­коса снизила до нуля опорный изгибающий момент над ним. Тогда расчетная схема стропильной ноги будет соответствовать рис. 3.2, в.

Изгибающий момент в стропильной ноге

Для определения распора в ригеле (затяжке) считаем, что опоры просели та­ким образом, что опорный момент над подкосом равен М1 а над стойками -нулю. Условно врезаем шарниры в места нулевых моментов и рассматриваем среднюю часть стропил как трехшарнирную арку пролетом lcp = 3,4 м. Распор в такой арке равен

Вертикальная составляющая реакции подкоса

Используя схему рис. 3.2.г, определим усилие в подкосе

Рис. 3.2. Схемы для расчета стропил

а-поперечный разрез чердачного покрытия; б -схема для определения рас­четной длины стропильной ноги; в – расчетная схема стропильной ноги; г – схема для определения распора в ригеле; л – тоже для схемы с одной про­дольной стеной; 1 – мауэрлат; 2 – лежень; 3 – прогон; 4 – стропильная нога; 5 -стойка; 6 – подкос; 7 – ригель (затяжка); 8 – распорка; 9, 10 -упорные бруски; 11 – кобылка; 12 – накладка.

Читать еще:  Облицовка фундамента дома пластиковыми панелями своими руками

Расчет стропильной ноги по прочности нормальных сечений

Требуемый момент сопротивления прогона

По прил. М принимаем ширину стропильной ноги b = 5 см и находим тре­буемую высоту сечения

По прил. М принимаем доску сечением 5х20 см.

В проверке прогибов стропильной ноги нет необходимости так как она на­ходится в помещении с ограниченным доступом людей.

Расчет стыка досок стропильной ноги.

Поскольку длина стропильной ноги больше чем 6,5 м необходимо выполнить ее из двух досок со стыком в нахлестку. Размещаем центр стыка в месте опирания на подкос. Тогда изгибающий момент в стыке при просадке подко­са М1 = 378,4 кН*см.

Стык рассчитываем аналогично стыку прогонов. Принимаем длину нахле­стки lнахл=1,5 м= 150см, гвозди диаметром d= 4 мм = 0,4 см и длиной lгв = 100 мм.

Расстояние между осями гвоздевых соединений

150 -3*15*0,4 =132 см.

Усилие воспринимаемое гвоздевым соединением

Расчетная длина защемления гвоздя с учетом нормируемого предельного зазора между досками δШ =2 мм при толщине доски δД= 5,0 см и длине острия гвоздя l,5d

В расчете нагельного (гвоздевого) соединения:

– толщина более толстого элемента с = δд=5,0 см.

Находим отношение а/с = 4,74/5,0 = 0,948

По прил. Т, находим коэффициент k н =0,36 кН/см 2 .

Находим несущую способность одного шва одного гвоздя из условий:

– смятия в более толстом элементе

= 0,35*5*0,4*1*1/0,95 = 0,737 кН

– смятия в более тонком элементе

= 0,36*4,74*0,4*1*1/0,95 = 0,718 кН

= (2,5* 0,4 2 + 0,01* 4,74 2 ) /0,95=0,674 кН

– но не более кН

Из четырех значений выбираем наименьшее Т = 0,658 кН.

Проверяем возможность установки пяти гвоздей в один ряд. Расстояние между гвоздями поперек волокон древесины S2=4d = 4*0,4 =1,6 см. Расстояние от крайнего гвоздя до продольной кромки доски S3=4d= 4*0,4 =1,6 см.

По высоте стропильной ноги h = 20 см должно поместится

4S2+2Sз=4*1,6+2*1,6 = 9,6 см 0 . По прил. Щ находим соответствующий углу α =18,7 0 коэффициент kα=0,95.

В расчете нагельного соединения толщина среднего элемента равна ширине стропильной ноги с=5 см, толщина крайнего элемента – ширине доски ригеля а =5 см.

Определяем несущую способность одного шва одного нагеля из условий:

– смятия в среднем элементе = 0,5*5* 1.2*0,95* 1 *1/0,95 = 3,00 кН

– смятия в крайнем элементе = 0,8*5*1,2*1*1/0,95 = 5,05 кН;

– изгиба нагеля = (l,8* 1,2 2 + 0,02* 5 2 ) /0,95=3,17 кН

но не более кН

Из четырех значений выбираем наименьшее Т=3,00 кН.

Определяем требуемое число нагелей (болтов) при числе швов nш=2

Принимаем число болтов nH=3.

В проверке сечения ригеля на прочность нет необходимости так как он име­ет большой запас прочности.

4. ОБЕСПЕЧЕНИЕ ПРОСТРАНСТВЕННОЙ ЖЕСТКОСТИ И ГЕОМЕТРИЧЕСКОЙ НЕИЗМЕНЯЕМОСТИ ЗДАНИЯ

Расчет диагональной стропильной ноги пример

В статье приведен пример классического расчета деревянных стропил в составе наслонной стропильной системы проектируемой двухскатной крыши с кровлей из асбестоцементных волокнистых листов по деревянной обрешетке. Целью расчета является определение (назначение) оптимальных размеров прямоугольного поперечного сечения стропильных ног при известных значениях постоянной и временной нагрузок.

l=1 м;
L=4,5 м;
β=35º
g H =0,25 кН/м 2 (коэфф. надежности ng=1,1);
p H =0,7 кН/м 2 (коэфф. надежности nP=1,6).
R=13·10 6 Па=13 МПа;
E=10 ГПа.

Схема для сбора нагрузок и расчета стропильных ног представлена ниже на Рис.1.

Рис.1. Схема к расчету стропильных ног

Р А С Ч Е Т :

1) Подсчет нагрузок

Нагрузка, действующая на каждую стропильную ногу (кроме крайних), собирается с грузовой площади шириной l=1,0 м (см. Рис.1).

Погонные нагрузки на стропильную ногу (на 1 пог.м. длины):
нормативная нагрузка:

расчетная нагрузка:

2) Расчет на прочность

Стропильная нога работает как наклонная изгибаемая балка, опирающаяся на два прогона: коньковый и настенный (мауэрлат). Расчетная схема стропил выглядит, как балка на двух опорах, нагруженная по всей длине равномерно распределенной нагрузкой.

Составляющие расчетной нагрузки:

Максимальный расчетный изгибающий момент:

Расчетная продольная сила:
Условие прочности балки из пластичного материала (в нашем случае — дерева), испытывающей прямой поперечный изгиб в сочетании с осевым растяжением (сжатием), имеет следующий вид:

Подставим известные нам абсолютные значения усилий в формулу (1):

Из двух слагаемых левой части неравенства (2), первое по абсолютному значению меньше второго. Действительно, числитель второго слагаемого больше первого более чем в 2 раза, а отношение их знаменателей можно выразить следующей зависимостью:

т.е. для наиболее употребительных размеров сечений деревянных элементов (стропил) момент сопротивления Wx численно меньше площади F в 25…50 раз. Вследствие этого сечение стропильных ног подбираем по второму слагаемому, но с небольшим запасом:

где: Wтр – требуемый момент сопротивления сечения стропил.

По таблицам ГОСТ 24454-80 «Пиломатериалы хвойных пород. Размеры» подберем такие размеры поперечного сечения стропильных ног, при которых фактическая величина момента сопротивления сечения (Wx=Wнт) будет чуть больше требуемой величины (Wтр). Данному условию удовлетворяет брус размером сечения b×h=7,5×15 см, расчетный момент сопротивления которого составляет:

Площадь принятого поперечного сечения будет равна F=b×h=7,5×15=112,5 см 2 .

Проверим условие прочности (1) для принятого сечения стропильных ног, подставив найденные значения Wx и F в выражение (2):

УСЛОВИЕ ПРОЧНОСТИ ВЫПОЛНЕНО!

P.S.: Как видим, влияние продольной силы на суммарные напряжения в стропильной ноге — незначительно, поэтому при уклонах кровли до 35° продольной составляющей нагрузки qz можно пренебрегать.

3) Расчет на жесткость

Интенсивность нормативной поперечной равномерно-распределенной нагрузки:

Проверим жесткость стропильной ноги, для чего определим величину относительного прогиба и сравним ее с величиной предельно допустимого прогиба:

УСЛОВИЕ ЖЕСТКОСТИ НЕ ВЫПОЛНЕНО!

Необходимо увеличить размеры сечения стропильных ног до тех значений, при которых момент инерции (Jx) сечения увеличится не менее чем в 1,33 раза. Таким образом, окончательно принимаем брус сечением b×h=7,5×15 см (момент сопротивления Jx=2810 см4).

Ссылка на основную публикацию
Adblock
detector